Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
EClinicalMedicine ; 45: 101310, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1828403

ABSTRACT

BACKGROUND: There is an urgent need for treatments of mild or moderate COVID-19 in an outpatient setting. METHODS: A randomized double-blind placebo-controlled clinical trial in 36 centers in the U.S. between August 2020 and February 2021 investigated the safety and effectiveness of oral nitazoxanide 600 mg twice daily for five days in outpatients with symptoms of mild or moderate COVID-19 enrolled within 72 h of symptom onset (ClinicalTrials.gov NCT04486313). Efficacy endpoints were time to sustained clinical recovery (TSR, a novel primary endpoint) and proportion of participants progressing to severe illness within 28 days (key secondary). FINDINGS: 1092 participants were enrolled. 379 with laboratory-confirmed SARS-CoV-2 infection were analyzed. In the primary analysis, median (IQR) TSR were 13·3 (6·3, >21) and 12·4 (7·2, >21) days for the nitazoxanide and placebo groups, respectively (p = 0·88). 1 of 184 (0·5%) treated with nitazoxanide progressed to severe illness compared to 7 of 195 (3·6%) treated with placebo (key secondary analysis, odds ratio 5·6 [95% CI 0·7 - 46·1], relative risk reduction 85%, p = 0·07). In the pre-defined stratum with mild illness at baseline, nitazoxanide-treated participants experienced reductions in median TSR (3·1 days, p = 0·09) and usual health (5·2 days, p < 0·01) compared to placebo. Nitazoxanide was safe and well tolerated. INTERPRETATION: Further trials with larger numbers are warranted to evaluate efficacy of nitazoxanide therapy in preventing progression to severe illness in patients at high risk of severe illness and reducing TSR in patients with mild illness.

2.
Cell Mol Life Sci ; 79(5): 227, 2022 Apr 07.
Article in English | MEDLINE | ID: covidwho-1777692

ABSTRACT

SARS-CoV-2, the causative agent of COVID-19, has caused an unprecedented global health crisis. The SARS-CoV-2 spike, a surface-anchored trimeric class-I fusion glycoprotein essential for viral entry, represents a key target for developing vaccines and therapeutics capable of blocking virus invasion. The emergence of SARS-CoV-2 spike variants that facilitate virus spread and may affect vaccine efficacy highlights the need to identify novel antiviral strategies for COVID-19 therapy. Here, we demonstrate that nitazoxanide, an antiprotozoal agent with recognized broad-spectrum antiviral activity, interferes with SARS-CoV-2 spike maturation, hampering its terminal glycosylation at an endoglycosidase H-sensitive stage. Engineering multiple SARS-CoV-2 variant-pseudoviruses and utilizing quantitative cell-cell fusion assays, we show that nitazoxanide-induced spike modifications hinder progeny virion infectivity as well as spike-driven pulmonary cell-cell fusion, a critical feature of COVID-19 pathology. Nitazoxanide, being equally effective against the ancestral SARS-CoV-2 Wuhan-spike and different emerging variants, including the Delta variant of concern, may represent a useful tool in the fight against COVID-19 infections.


Subject(s)
Antiviral Agents , Nitro Compounds , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Thiazoles , Antiviral Agents/pharmacology , Humans , Nitro Compounds/pharmacology , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Thiazoles/pharmacology , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL